MOCpages : Share your LEGO® creations
LEGO models my own creation MOCpages toys shop
Welcome to the world's greatest LEGO fan community!
Explore cool creations, share your own, and have lots of fun together.  ~  It's all free!
Comment on Porsche 911 (997) Turbo Cabriolet PDK + Video
 
Rate it
55555 Excellent  
I like it
4444 Very good
I like it
333 Good
22 Average
1 Not good
  (I'll rate it later)
First name Have a MOCapges account? Sign in
Last name
E-mail
You'll need to check your e-mail before we post your comment.
Your e-mail won't be shown onscreen, and we will never sell or abuse it.
Comments
(No HTML, please)
  Use appropriate language and do not be mean, rude, or insulting.
Inappropriate comments will be deleted before anyone sees them,
and your account may be deleted. Full rules | Why?


Porsche 911 (997) Turbo Cabriolet PDK + Video . . This is previously called SuperCar 2011. Continue from this article: SuperCar 2011 - Chassis Note: PDK is the Porsche's name to his dual clutch gearbox, and 997 is the generation (5th and actual). Below you can find a more accurate description of the mechanisms. As fast details, the car weight 3.65kg, with around 3500 parts and more than 6 meters of wires Final dimensions: 74 studs length, 31 width and 22 of height. The car maintains all proportions of the real 911, either some of them hard to believe for example: - the steering wheel axle is up to 22 degrees from the horizontal, as the real 911. - the steering wheel turn exactly 2.6 laps, as the real 911. - have a axle load weight, in 40% front and 60 rear(1460/2190gr), as the 911 Turbo Cabriolet version. Electric system: - 3 PF controllers - 3 IR PF Receivers - 2 RC motors - 1 PF XL motor - 5 PF M motors - 3 PF light - 2 Lithium batteries - 1 PF switch - 3 PF wires 50cm - 3 PF wires 20cm The use of each element will be described below Both lithium batteries are inside the front axle, there is the boot too, with 5x11x6 studs you can hold a PF controller. For turning on or off the batteries is not necessary to open the hood, you only have to push a little lever located on the left side of the steering wheel. Just in front of the co-pilot seat you can see a lever to open the hood. The doors have a real lock, to open them just click the handle and will open smoothly. To close it, you only need push it and it will self-lock. As outstanding remote controlled features: - Front steering with working steering Wheel - Front and rear lights - Rear retractile and adjustable spoiler - Folding top - Handbrake - Disc brakes with rear lights - Dual clutch gearbox with 7+R speeds and auto-selection clutch The folding top and spoiler secuence. Possibly, the most wanted picture for Lego Technic followers: Complete Chassis I have also copied (within the Lego limits) the structure of chassis and axle designs. Unibody Chassis Here you can see the car's unibody chassis, which is the most important and the more complicated part. It is very rigid and light. Front axle I have designed a McPherson as the 911 use. It has suspension, steering, disc brakes and drive. Also this axle includes other mechanical features: - Camber angle (~3.36 degrees) - Ackerman steering - Caster angle (~2 degrees) Rear axle This is a multilink axle type, as the 911 uses, which is much more realistic and also allows me to get away from the typical double-arm axles used in almost every Technic MOC. As extra feature this axle has camber angle(1 degree). If you want more information about the chassis follow this link: SuperCar 2011 - Chassis Gearbox and transmission For describe more easily how the transmission works, I will go from drive motors to the wheels. To start with, the transmission sequence has changed, from real: - Engine -> clutch -> gearbox -> transmission -> wheels to: - Engine -> gearbox -> clutch -> transmission -> wheels I've done it this way to keep the gearbox turning in every moment, so the transmission operates more smoothly. Drive motors For drive I have used two RC motors, because this combination is smaller than using 4 XL motors. Each motor is connected to a battery (you can not connect 2 RC motors to one battery without electrical cut). The motors send the transmission to the gearbox and to the fake engine, the classic Porsche Boxer-6. Gearbox As I previously said, I have used a dual clutch gearbox (Porsche's PDK). Really dual clutch gearboxes are two gearboxes, one with even speeds and reverse (R, 2nd, 4th and 6th) and other with odd speeds (1st, 3rd, 5th and 7th) Here you can see gearbox structure: Also I have copy the speeds ratio (or very close...). A little graphical comparison between the real gearbox ratio and my MOC version (start with 1st=1): The gearbox has a speed indicator over it. In any moment you can know the selected speed. Clutches I decided to do the never-done-before: radio-controlled friction clutches. Obviously the car has two of them, one behind each seat. Probably, the mechanism for controlling them have been the most complicated challenge I've ever had. Here you can see a little picture with clutches design: The system push the last liftarm to the axle, and the round brick pushes the wheel to the first plate. By this system, torque passes over it and finishes in the transmission. Clutches working Clutch selection comes from gearbox through some mechanism and finished in the corresponding clutch. And now, the best part of the car: the strength to push the clutches don't comes from gearbox, comes of secondary motor, controlling this motor you can control the car movement, regardless of the accelerator, as a real clutch pedal!!! While you keep the secondary motor working, the corresponding clutch will be connected, so when you let it go, the clutch will self-disconnect and the car stops. After the clutch, the force goes to central diff, and from there to the axles and wheels. I know that is very strange, now I am filming a video with all features working. Accelerator To avoid having to keep two functions pushed at the same time, you can select a velocity for drive motors. Both motors velocity are controlled by the integrated regulator in lithium batteries, this last one is controlled by an M motor from the remote control. Another way to make that is using a train controller, but that forces me to use a forth IR receiver. In this picture you can see the regulator gears: The front and rear lights works at the same time that motors. The mechanism has a cap to prevent the motors turn in opposite direction. If you want to go back, you should select reverse in the gearbox. Brakes The car uses a disc brakes system in all wheels. The brakes are actuated by the same motor who actuated the clutches. For finish a little video: You can see more pictures and information in my web site: sheepo.es I hope you like it!!! Thanks for reading!!!, and in a few days the mechanical features.


LEGO models my own creation MOCpages toys shop


You Your home page | LEGO creations | Favorite builders
Activity Activity | Comments | Creations
Explore Explore | Recent | Groups
MOCpages is an unofficial, fan-created website. LEGO® and the brick configuration are property of The LEGO Group, which does not sponsor, own, or endorse this site.
©2002-2014 Sean Kenney Design Inc | Privacy policy | Terms of use